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Abstract— We propose a distortion model for a lattice
vector quantization scheme with codebook shape adapted
thresholding. We assume that the source (wavelet coeffi-
cients) have a laplacian distribution, which is a common hy-
pothesis in the field of image compression. Combined with a
bit-rate model recently proposed by the authors, this work
permits to design an efficient bit allocation algorithm.
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I. INTRODUCTION

Many works have been done [1][2][3][4][5][6][10] on Lat-
tice Vector Quantization (LVQ) associated to Discrete
Wavelet Transform (DWT) during the ten past years, in
the field of image compression. The most of these works
are based on an intraband approach whereas most effici-
cient algorithms such that SPIHT [10] or JPEG2000 are
based on the interband approach. However, interbands
methods have some background specially concerning se-
cure transmission. Moreover vector quantization benefits
of the theoretical superiority from the point of view of the
information theory.

It is also of interest to design an efficient LVQ based com-
pression scheme: we have showed in [11] that the concept
of vector dead zone yelds an improvement of visual qual-
ity compared to SPIHT and JPEG2000 algorithms (as it
is shown in figure 1). Consequently, we have to design an
efficient bit allocation algorithm. Here, we propose a the-
oretical distortion model for laplacian distributed sources
which, combined to our rate model [11], allows to signifi-
cantly simplify the bit allocation procedure by using ana-
lytical functions instead of processing data.

The paper is organized as follows. In section 2 we present
the concept of vector dead zone. Section 3 is dedicated
to the distortion model. Finally, section 4 presents some
experimental results.

II. THE VECTOR DEAD ZONE

The principle of our vector dead zone is following: by
using a code book shape adapted thresholding, we can take
into account significant blocks of wavelet coefficients. For
a given rate, we can get a lower distortion by quantizing
more precisely high energie vectors. Details on the lattice
vector quantization scheme are given in [11], [4], [6].

Fig. 1. original image of lena, DZLVQ, JPEG2000, SPIHT; Rate of
0.125 bpp (CR=1:64)

A. Definition

A pyramidal code book shape is well suited to laplacian
distributed data for overload noise minimization purpose
[5]. Thus we have proposed in [11] to design the codebook
shape by including a pyramidal vector dead zone (see fig-
ure 2). It consists in replacing the voronoi of origin by an
hyper-pyramid of radius Rpz called dead zone (DZ). This
new code book shape enables in one hand to minimize the
overload distortion due to the source scaling within the
code book and on the other hand to remove “non signifi-
cant” source vectors, that is vectors belonging to the dead
zone. Note, that the vector dead zone has a pyramidal
shape too, since the source scaling also involves an over-
load distortion around the dead zone radius.

For a laplacian distributed source, we set:

DZ = {x R/ ||zfly =) |al < RDZ} (1)
i=1
With Rpz the dead zone radius.

Let 6 = [Rsz—‘be the radius of the first code book shell

outside the dead zone. The whole lattice code book includ-
ing the dead zone can be defined by:

Cpz ={y € Z"/6 <|lyl, < Rr}jU{0}

where 0 is the null vector (see figure 2) and Ry the code-
book truncation radius.
Let us explain now the quantization process itself.
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Fig. 2. The codebook with dead zone

B. The quantization process

In this paragraph we are going to describe how vectors
are quantized according to the area.

In the folowing, we note rpz = Rfy’z
on the scaled source.

The codebook is composed of three areas: the dead zone
DZ, the overload zone OZ and the uniform zone UZ, as it
is shown in figure 3. We can see on figure 3 an exemple of
overload zone for n = 2.

In the dead zone, the vectors are quantized by 0.

The overload zone is defined by:

the dead zone radius

0Z={ycZ"/rpz <yl <0} (2)

OZ can be splitted in two sub-regions (see figure 3). Vec-
tors belonging to NF' are normally quantized. In F', vec-
tors are not naturally quantized in the first shell outside
the dead zone, but quantized inside the dead zone. Conse-
quently these vectors must be rescaled. The corresponding
factor is computed as follows:

Assume that X is a source vector belonging to F, v the
scaling factor, and z the scaled vector, we have z = %X =
(T1y ey )

Suppose that ||@ (x)|| = E, the norm of the quantized
vector must increase of A = § — E. Note that A is an
integer. To quantize = on the shell §, we have to determine
a factor 8 such that:

B = argmin {b €]1, +-00[/ [|Q (bz)[|, = 6}

Rpz
5

(3)

We recall that § = 1 is the radius of the first code
book shell outside the dead zone

We define 3; as: 3; = % which corresponds to
the smallest factor permitting to increase by 1 the absolute
value of the quantized component i. We sort (8;),—; ., in

the ascending order, to obtain (Ej)jzl N

The factor verifying 3 is given by 8 = 3, indeed we add
1 (in absolute value) to A quantized components, by this
way the norm vector is equal to ¢, it is quantized outside
the dead zone.

Note that:
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Fig. 3. the three code book regions

1. This operation is not an orthogonal projection, but the
difference is neglictible because of the width of the OZ.
2. The coast of this operation is neglictible too as it is
concerned only by few vectors.

In the third region (uniform zone) vectors are uniformly
quantized.

III. THE DISTORTION MODEL

A theoretical distortion model for DZLVQ presents two
main advantages:

- first, it allows to proove from a theoritical point of view
the interest of the vector dead zone approach,

- second, it permits to significantly simplify the bit al-
location procedure by using analytical functions instead of
processing data.

In the following, we are going to give the distortion in
the three regions and finally, the global distortion.

A. Dead zone distortion

We suppose that X = (z1,...,2,) € R" is an i.i.d. ran-
dom vector i.i.d, it is laplacian distributed with a standard
deviation equals to o and a null mean. The analytical ex-
pression of the dead zone distortion Dpy in the case of a

laplacian source is given by:
(k+ 3

with J = —e 227 (R%,, + 2Rpz + %) + =, A =
Proof: 'We not f, the joint pdf of X and f the lapla—
cian pdf in the scalar case. We have,
Dpz(Rpz)= [ |IXI5 fa (@1, 2n
X1, <Rpz
(x% + ...+ x%) f(z1)...f(zn)day...dxy
X1l <BEpz
as X is ii.d. Thus,

Dpz (Rpz) =n (J — 2 e Moz RY Z

|ﬂq;
N—

)dxzy...dz,

First shell outside
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Dpz (Rpz) =Y. J 22 f(x1)...f(xn)dwy...dzy,
i=1||X||,<Rpz

Dpz(Rpz)=n [ aif(z1)...f(en)dey...dey,

—— experimental f#
= = theoretical

X1, <Rpz
=n 22 f(x) f(@2)...flxn)dzy.. dr, /
|z|<Rpz |z2|+...+|zn|<Rpz—|z| A
since we have, il /7
{IX]l; <Rpz} ={lz1| <Rpz}N A £
with A = {|za| + ... + |Za| < Rpz — |21]}
The bracketed integral is the repartition function of the Az 4
radius law for a laplacian distribution F,_; [5]. We obtain
an analytical expression of F, using successive per part osl
integrations:
n—1 k % : 2 3 i s 6 7
F,(R) = fon (@1, zy) day..dzy, = 1—e M Z % seaino ectr
k=0
X1, <R Fig. 4. Distortion function of the scaling factor; dead zone radius
equals to 10; standard deviation of the laplacian source: 10
Consequently,

DDZ (sz) =N f fo(x)Fn,1 (RDZ - |$|) dx

|z|<Rpz
=n [ 22 f(x) [1 — e MEpz—|z]) nzl 7(]%”'4“'“7)*} dx
|z|<Rpz k=0
By solving this integral we obtain the formula 4. ]
In the following we are going to focus on the distortion
in the overload and uniform regions.

B. Distortion in both overload and uniform regions

As we can see in figure 3, some vectors belonging to the
overload zone have to be rescaled to be quantized in the
codebook. But the experimentation shows that the use of
the vector dead zone allows to decrease significantly the
scaling factor. Consequently:

1. the width w of this area depends on the scaling factor
v:

75 - sz, (6)
with0 < w<y

w =

w is small regarding to whole codebook, thus we consider
the overload and the uniform zones as only one region.
2. We can do the high resolution hypothesis for vectors be-
longing to the uniform zone: we consider the quantization
noise is uniformly distributed.

The distortion in the uniform zone is given by:

Duyz (Rpz,7) =

[ X =AQ X)) fu (21 ooy ) dy.dity
X1, >Rpz
In the uniform case, the well known [4] scalar distortion

is equal to :1%, consquently:

2
Duz (Rpz,v) =" [ fo(z1,..
X1, >Rpz

Finally we obtain the expression of distortion in the uni-
form region:

, T) dxy ... dTy

Dyz (Rpz,v) = % (Frn(Rpz)) (7)

where F,, (Rpz) = P(X ¢ DZ) =1— F,(Rpz), F, is
given by 5.
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Fig. 5. Distortion function of the dead zone radius; scaling factor
equals to 6; standard deviation of the laplacian source: 10

C. Global distortion

According to our scheme, the global distortion

D (Rpz,~) per component can be expressed as:

1
D(Bpz,7) = — |Dpz (Rpz) + Duz (Bpz,7)]  (8)
In the next section we are going to verify the validity of

our approximation.

IV. THEORETICAL VS. EXPERIMENTAL RESULTS

Figures 4 and 5 show distortion as a function of + and
Rpz respectively. The experimental results have been ob-
tained using a synthetic laplacian distribution (standard
deviation equals to 10 and average equals to 0), the size
vectors is equal to 4. We can see on both figures that our
model is accurate.

In figure 4, the dead zone radius has been fixed (Rpz =
10), the model curve fits well the experimental distortion



for scaling factors lower than 6, which represents here the
limit of the high resolution hypothesis. In figure 5, v is
equal to 6, we can remark discontinuities on curves when
Rpz =kvy,v€N.

We have seen that our model was efficient when the high
resolution hypothesis was available. It can also be associ-
ated to the rate model in order to determine the optimal
parameter for a given rate.

V. CONCLUSION

In this paper we have presented an efficient distortion
model for dead zone lattice vector quantization. We have
shown that this model was accurate under the high reso-
lution assumption. It allows, on one hand, to proove from
a theoritical point of view the interest of the vector dead
zone approach, and on the other hand it permits (combined
to our rate model) to design an efficient bit allocation al-
gorithm.
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